an International CBSE Finger Print School
Coimbatore

SUBJECT - CHEMISTRY

GRADE-XII

SOLUTIONS

TOPIC - CONCENTRATION

SOLUTIONS

CONCENTRATION

SHinnus

Why is mount
Why is it more salty? nown amount vent or solution

Question

What is the meaning of dilute solution?

Answer:

$>$ A solution in which solute is present in very small quantity.

Question

What is the meaning of concentrated solution?

Answer:

$>$ A solution in which solute is present in large quantity.

Question

What is the meaning of standard solution?

Answer:

$>$ A solution whose concentration is known is called as standard solution.
$>$ From this any other known concentration can be prepared.

Question

Which way is better to describe solution if the options are given

1. Qualitatively
2. Quantitatively

Answer:
$>$ Quantitatively.
i.e., based on amount of solute

The most commonly expressed concentration terms are.

1 MASS PERCENTAGE
2 VOLUME PERCENTAGE
3 MASS BY VOLUME PERCENTAGE
4 ppm (parts per million)
5 MOLE FRACTION
6 MOLARITY
7 MOLALITY
8 NORMALITY
9 FORMALITY

Conceaticatituation be expresssed in onanyayatywo ways or many ways?

MASS \& VOLUME PERCENTAGE

A) MASS PERCENTAGE

It is denoted with $(w / w) \%$
Definition:
The amount of solute in grams present in 100 grams of the solution is called "Mass percentage".

Formula:

Mass \% of component

$$
=\frac{\text { Mass of solute }}{\text { Mass of solution }} \times 100
$$

A) MASS PERCENTAGE

What do you mean by $\mathbf{3 5 \%}$ (w/w) glucose solution ?

Ans:

35 gms of glucose in 100 g solution
Wt. of glucose $=35 \mathrm{~g}$
Wt. of solution $=100 \mathrm{~g}$
Wt. of solvent $=w t$. of solution $-w t$. of solute
$=100-35$
$=65 \mathrm{~g}$

Question

Calculate the mass percentage of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$. If 22 g of benzene dissolved in 122 g of carbon tetrachloride (CCl_{4}).

Answer:

Mass. of solute (Benzene) $=22 \mathrm{~g}$
Mass. of solvent $\left(\mathrm{CCl}_{4}\right)=122 \mathrm{~g}$
Mass. of solution $=22+122$

$$
=144 \mathrm{~g}
$$

Question

Calculate the mass percentage of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$. If 22 g of benzene dissolved in 122 g of carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$.

Answer:

$\begin{aligned} \text { Mass \% of solute } & =\frac{\text { Mass of solute }}{\text { Mass of solution }} \times 100 \\ & =\frac{22}{144} \times 100 \\ & =15.28 \%\end{aligned}$
Mass \% of solvent= 100-15.28 = 84.72\%

B) VOLUME PERCENTAGE

It is denoted with (V/V)\%
Definition:
The volume of solute in ml present in 100 ml of the solution. It is called "Volume percentage".

Formula:
Volume percentage of a component

$$
=\frac{\text { Volume of solute }}{\frac{\text { Volume of solution }}{}} \times 100
$$

Can you tell what 10% ethanol means?

Answer:

$>10 \mathrm{ml}$ of ethanol present in $\mathbf{1 0 0} \mathbf{~ m l}$ of aqueous solution.

Calculate the volume percentage of $\mathbf{1 0 \%}$ of ethyl alcohol in a solution of water.

Answer:

Vol. of solute $=10 \mathrm{ml}$
Vol. of solvent = Vol. of solution - Vol. of solute

$$
=100-10
$$

$=90 \mathrm{ml}$

Question

Calculate the volume percentage of $\mathbf{1 0 \%}$ of ethyl alcohol in a solution of water.

Answer:

$$
\begin{aligned}
\text { Vol \% of solute } & =\frac{\text { Volume of solute }}{\text { Volume of solution }} \times 100 \\
& =\frac{10}{100} \times 100 \\
& =10
\end{aligned}
$$

MASS BY VOLUME PERCENTAGE \& PARTS PER MILLION

C) MASS BY VOLUME PERCENTAGE

It is denoted with $(w / V) \%$

Definition:

The mass of solute in grams present in 100 ml solution or it is the mass of solute dissolved in $100 \mathbf{~ m l}$ of solution.

Formula:

mass by volume \%

$$
=\frac{\text { mass of solute }}{\text { Volume of solution }} \times 100
$$

Question
What is meant by $\mathbf{1 0 \%}(\mathrm{w} / \mathrm{V})$?

Answer:

10 grams of solute present in $100 \mathbf{~ m l}$ of solution.

Question

Calculate the mass by volume percentage of "NaOH" when 10 grams of NaOH is present in 100 ml of a solution?.

Answer:

Mass. of solute $=10 \mathrm{gms}=10 \%\binom{\mathbf{w}}{\overline{\mathrm{~V}}}$
Vol. of solution $=100 \mathrm{ml}$

Question

Calculate the mass by volume of " NaOH " when 10 grams of NaOH is present in $\mathbf{1 0 0} \mathbf{~ m l}$ of a solution.

Answer:

Mass by volume \% of $\mathbf{N a O H}$

$$
\begin{aligned}
& =\frac{\text { mass of solute }}{\text { Volume of solution }} \times 100 \\
& =\frac{10}{100} \times 100=10
\end{aligned}
$$

D) Parts per million

> When a solute is present in very small (trace) quantities, then it is convenient to express the concentration in $\mathbf{p p m}$.

> | Number of parts of the component |
| :---: |
| Total number of parts of all the |
| components in a solution |

D) Parts per million

For example
$>$ Concentration of dissolved oxygen in a sea water can be expressed in ppm.
$>$ Concentration of pollutants in water or atmosphere can be expressed in ppm.

Explain the importance of fluoride ion in water and any other use?

Answer:

>1 ppm of fluoride ions concentration in water prevents tooth decay.
> 1.5 ppm of fluoride ions in water leads to mottled teeth.
> Higher concentration of fluoride ions in water becomes poisonous.
> Sodium fluoride is used in rat poison.

1. Water pollution can be measured in...........
a) $(\mathrm{w} / \mathrm{w}) \%$
b) $(\mathrm{w} / \mathrm{v}) \%$
c) $(\mathrm{v} / \mathrm{v}) \%$
d)/ppm

MOLE FRACTION

E) MOLE FRACTION

It is denoted with X
Definition:
The ratio of number of moles of one component to the total number of moles of all the components present in a solution.

E) MOLE FRACTION

For example
In a binary mixture, if the number of moles of A and B are n_{A} and n_{B} respectively, the mole fraction of A will be

$$
\mathbf{X}_{\mathrm{A}}=\frac{n_{A}}{n_{A}+n_{B}}
$$

E) MOLE FRACTION

For a solution containing i number of components, we have
Formula:

$$
\mathrm{X}_{1}=\frac{n_{1}}{n_{1}+n_{2}+\ldots \ldots \ldots+n_{i}}=\frac{n_{1}}{\sum n_{i}}
$$

> The sum of mole fractions of all the components is unity.

$$
\text { i.e } \quad X_{1}+X_{2}+\ldots \ldots \ldots X_{n}=1
$$

E) MOLE FRACTION

$>$ It is useful in relating some physical properties of solutions like vapour pressure etc.
> It has no units (because it is a ratio of no.of moles).
$>$ It is independent of temperature.

Make a note :

Number of moles (n) =
Weight (Wt)

Gram molecular weight (GMW)

Mole percent $=$ mole fraction $\times 100$

Question

Calculate the mole fraction of $\mathbf{H}_{2} \mathrm{SO}_{4}$ in a solution containing $\mathbf{9 8 \%} \mathbf{H}_{2} \mathrm{SO}_{4}$ by mass.

Answer:

$98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by weight means 100 g of solution contains 98 g of $\mathbf{H}_{2} \mathrm{SO}_{4}$ by mass

$$
\text { Wt. of water }=100-98=2 \mathrm{~g}
$$

No. of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{n}_{1}\right)=\frac{\mathrm{Wt}}{\mathrm{GMW}}=\frac{98}{98}=1$

Question

Calculate the mole fraction of $\mathbf{H}_{2} \mathrm{SO}_{4}$ in a solution containing $\mathbf{9 8} \% \mathbf{H}_{2} \mathrm{SO}_{4}$ by mass.

Answer:

No. of moles of $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{n}_{2}\right)=\frac{W t}{G M W}=\frac{2}{18}=\frac{1}{9}$
Mole fraction of $\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{X}_{1}\right)=\frac{n_{1}}{n_{1}+n_{2}}$

$$
\begin{aligned}
& =\frac{1}{1+\frac{1}{9}} \\
& =0.9
\end{aligned}
$$

Question

A solution of sucrose in water is labelled as 20% (w/w). What would be the mole fraction of each component in the solution?

Answer:

Mass of sucrose $\quad=\mathbf{2 0}$ g
Molar mass of sucrose $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$

Mass of water $($ solvent $)=100-20$

$$
=80 \mathrm{~g}
$$

Molar Mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$

Question

A solution of sucrose in water is labelled as 20% (w/w). What would be the mole fraction of each component in the solution?

Answer:

$$
\begin{aligned}
n_{\text {sucrose }} & =\frac{20}{342}=0.0585 \mathrm{~mol} \\
n_{\text {water }} & =\frac{80}{18}=4.45 \mathrm{~mol} \\
n & =n_{\text {sucrose }}+n_{\text {water }} \\
& =0.0585+4.45=4.5
\end{aligned}
$$

Question

A solution of sucrose in water is labelled as 20% (w/w). What would be the mole fraction of each component in the solution ?

Answer:

$$
\begin{gathered}
X_{\text {sucrose }}=\frac{n_{\text {sucrose }}}{n_{\text {total }}}=\frac{0.0585}{4.5}=0.013 \\
X_{\text {water }}=\frac{n_{\text {water }}}{n_{\text {total }}}=\frac{4.45}{4.5}=0.987
\end{gathered}
$$

Question

Calculate the mole fraction of benzene in a solution containing $\mathbf{3 0 \%}$ by mass in carbon tetrachloride.

Answer:

$$
\begin{aligned}
\text { Mass of solution } & =100 \mathrm{~g} \\
\text { Mass of } \mathrm{CCl}_{4} & =70 \mathrm{~g} \\
\text { Mass of } \mathrm{C}_{6} \mathrm{H}_{6} & =100-70 \\
& =30 \mathrm{~g}
\end{aligned}
$$

$$
\text { Molecular weight of } \mathrm{CCl}_{4}=154
$$

Molecular weight of benzene $=\mathbf{7 8}$

Question

Calculate the mole fraction of benzene in solution containing $\mathbf{3 0 \%}$ by mass in carbon tetrachloride.

Answer:

No. of moles of $\mathrm{C}_{6} \mathrm{H}_{6}=\frac{\text { Mass }}{\text { Molar mass }}$

$$
=\frac{30}{78}=0.385 \mathrm{~mol}
$$

No. of moles of $\mathrm{CCl}_{4}=\frac{70}{154}=0.454 \mathrm{~mol}$

Question

Calculate the mole fraction of benzene in solution containing $\mathbf{3 0 \%}$ by mass in carbon tetrachloride.

Answer:

$$
\begin{aligned}
\text { Mole fraction of } \mathrm{C}_{6} \mathrm{H}_{6} & =\frac{\mathrm{n}_{\mathrm{C}_{6} H_{6}}}{\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{6}+{ }^{\mathrm{n}_{\mathrm{CCl}_{4}}}}} \\
& =\frac{0.385}{0.385+0.454} \\
& =0.4583
\end{aligned}
$$

Mole fraction of $\mathrm{C}_{6} \mathrm{H}_{\mathbf{6}}=\mathbf{0 . 4 5 8 3}$

Thank you...

